Block Patterns

Assume this block pattern continues.

- 1. From left to right, what is the first number in Row 50?
- 2. What is the first number in the Row 100?
- 3. How many blocks are in Row 25?
- 4. What number is on the third block in Row 12?
- 5. What number is on the sixth block in Row 20?
- 6. What is the number on the last block in Row 9?
- 7. What is the second to last number in Row 13?
- How much less is the fourth number than the fifth number in Row 15? _____

MATHgazine Editors

Junior!

Carole Greenes Ed. D. carole.greenes@asu.ede Jason Luc jason.luc@asu.edu Yifan Tian yifan.tian@asu.edu Tanner Wolfram twolfram@asu.edu

VOLUME 6 | ISSUE 6 | April 2016 ©2016 PRIME Center, Arizona State University

Name Game					
Mary	David	Steven	Jackie		
Age:	Age:	Age:	Age:		
Rich	Shelly	Nancy	Fred		
Age:	Age:	Age:	Age:		

Use the clues. Fill in each person's age.

- Shelly: "The sum of my age and Nancy's age is
 40. The product of our ages is 300."
- David: "The product of my age and Mary's age is 105. The difference in our ages is 8. I am older than Shelly."
- 3. Fred: "The sum of my age and my grandfather's age is 80. The difference in our ages is 64."
- Jackie: "The sum of my mother's age and my age is 52. My mother was 24 years old when I was born."
- Rich: "The product of my age and my father's age is 120. The difference in our ages is 26. Next year I'll be starting school."
- 6. Steven: "The product of my age and my grandmother's age is 540. The sum of our ages is69. My age is a single-digit number."

CHECK: The sum of all the ages is 97.

In a Row

- How many people can be seated when 10 square tables are put together in a straight line? Table tops are all the same size. Only one person may be seated at each side of a table.
- How many people can be seated when 11 tables are put together? _____
- How many people can be seated when 25 are put together? _____
- How many people can be seated when 40 tables are put together?
- How many people can be seated when 150 tables are put together?
- 6. Generalize the pattern. Use the variable "n" to stand for numbers of tables. When "n" tables are put together, how many people can be seated?
- How many tables were put together to seat exactly 32 people? _____
- How many tables were put together to seat exactly 64 people?
- 9. How many tables were put together to seat exactly 160 people?

VOLUME 6 | ISSUE 6 | April 2016 ©2016 PRIME Center, Arizona State University

$\beta \alpha \mathbb{Z} \alpha \mathbb{N} \theta \varsigma$

Balzano is a puzzle that will tap into your logical reasoning abilities. Read the directions carefully, then try your hand at Balzano Shapes.

Directions:

Your job is to figure out the Desired Arrangement (the solution) of three elements (shapes) from clues that provide information about the shapes and their locations. The possible shapes are **circle, hexagon, square, trapezoid, and triangle.** No shape may be repeated. The **Arrangement Column** shows sets of shapes in rows. In the Balzano puzzle below, the

second row, arranged in order from left to right, is: trapezoid, hexagon, circle.

Correct Shape in the Correct Place identifies the number of elements that are the correct shape AND are in the right place. The second row has 1 shape in the right place.

Correct Shape in the Wrong Place identifies the number of correct shapes BUT in the wrong place. There are 2 of these in the second row.

Incorrect Shape identifies the number of shapes that do not belong in the arrangement. There are 0 of these in the second row.

	Correct Shape/Place	Correct Shape/ Wrong place	Wrong shape/ Wrong place
$\triangle \Box \bigcirc$	1	1	1
$\Box \Delta \Box$	1	2	0
$\bigcirc \bigcirc \land$	1	1	1
$\Box \bigcirc \triangle$	0	2	1
	3	0	0

VOLUME 6 | ISSUE 6 | April 2016 ©2016 PRIME Center, Arizona State University