Block Patterns

Assume this block pattern continues.

1. From left to right, what is the first number in Row 50 ? \qquad
2. What is the first number in the Row 100 ? \qquad
3. How many blocks are in Row 25 ? \qquad
4. What number is on the third block in Row 12 ? \qquad

MATHgazine Editors

Carole Greenes Ed. D.
carole.greenes@asu.ede
Jason Luc
jason.luc@asu.edu
Yifan Tian
yifan.tian@asu.edu
Tanner Wolfram
twolfram@asu.edu

Name Game
Mary

Jackie

Age: \qquad Age: \qquad Age: \qquad Age: \qquad
Rich
Shelly
Nancy
Fred

Age: \qquad Age: \qquad Age: \qquad Age: \qquad
Use the clues. Fill in each person's age.

1. Shelly: "The sum of my age and Nancy's age is 40. The product of our ages is 300 ."
2. David: "The product of my age and Mary's age is 105. The difference in our ages is 8 . I am older than Shelly."
3. Fred: "The sum of my age and my grandfather's age is 80 . The difference in our ages is 64 ."
4. Jackie: " The sum of my mother's age and my age is 52 . My mother was 24 years old when I was born."
5. Rich: "The product of my age and my father's age is 120 . The difference in our ages is 26 .

Next year I'll be starting school."
6. Steven: "The product of my age and my grandmother's age is 540 . The sum of our ages is 69. My age is a single-digit number."

In a Row

1. How many people can be seated when 10 square tables are put together in a straight line? Table tops are all the same size. Only one person may be seated at each side of a table. \qquad
2. How many people can be seated when 11 tables are put together? \qquad
3. How many people can be seated when 25 are put together? \qquad
4. How many people can be seated when 40 tables are put together? \qquad
5. How many people can be seated when 150 tables are put together? \qquad
6. Generalize the pattern. Use the variable " n " to stand for numbers of tables. When " n " tables are put together, how many people can be seated? \qquad
7. How many tables were put together to seat exactly 32 people? \qquad
8. How many tables were put together to seat exactly 64 people? \qquad
9. How many tables were put together to seat exactly 160 people? \qquad

MATCH MEASUREMENTS

Use the numbers on the signs to fill in the blanks. Numbers must fit the facts.

1. Height $=$ \qquad cm Width = \qquad cm Length $=$ \qquad cm Volume $=$ \qquad cm^{3}	2. Height = \qquad cm Diameter $=$ \qquad cm Circumference $=$ \qquad cm Weight = \qquad grams Hint: $\mathrm{C}+h=35.1$
3. Height $=$ \qquad cm Diameter $=$ \qquad cm Circumference $=$ \qquad cm Weight = \qquad grams Hint: $\mathrm{C}+h=32$	Height $=$ \qquad cm Length = \qquad cm Width $=$ \qquad cm Volume $=$ \qquad cm^{3} Surface Area = \qquad cm^{2}

Composites

Composite numbers have 3 or more factors.
Between 1 and 100:

1. The least composite number is
\qquad
It has \qquad factors.
It's factors are \qquad .
2. The greatest composite number is \qquad .
It has \qquad factors.
Its factors are \qquad .

Between 1 and 50:
3. The composite number with the greatest number of factors is \qquad . It has \qquad factors.
Its factors are \qquad .

Balzano is a puzzle that will tap into your logical reasoning abilities. Read the directions carefully, then try your hand at Balzano Shapes.

Directions:

Your job is to figure out the Desired Arrangement (the solution) of three elements (shapes) from clues that provide information about the shapes and their locations. The possible shapes are circle, hexagon, square, trapezoid, and triangle. No shape may be repeated.
The Arrangement Column shows sets of shapes in rows. In the Balzano puzzle below, the second row, arranged in order from left to right, is: trapezoid, hexagon, circle.
Correct Shape in the Correct Place identifies the number of elements that are the correct shape AND are in the right place. The second row has 1 shape in the right place.
Correct Shape in the Wrong Place identifies the number of correct shapes BUT in the wrong place. There are 2 of these in the second row.
Incorrect Shape identifies the number of shapes that do not belong in the arrangement. There are 0 of these in the second row.

	Correct Shape/Place	Correct Shape/ Wrong place	Wrong shape/ Wrong place
	1	1	1
$\bigcirc \square$	1	2	0
\square	1	1	1
	0	2	1
	3	0	0

